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Abstract 
Measurements of ion drift velocity made by the Millstone Hill incoherent 

scatter radar have been used to calculate the meridional neutral wind velocity during 

the Sept. 17-24,1984 period. Strong daytime southward neutral surges were observed 

during the magnetically disturbed days of September 19 and 23, in contrast to the 

small daytime winds obtained as expected during the magnetically quiet days. The 

surge on September 19 was also seen at Arecl'bo. In addition, two approaches have 

been used to calculate the meridional wind component from the radarderived height 

of the F-layer electron density peak. Results confirm the wind surge, particularly 

when the strong electric fields measured during the disturbed days are included in 

the calculations. The two approaches for the F-layer peak wind calculations are 

applied to the radarderived electron density peak height as a function of latitude to 

study the variation of the southward daytime surges with latitude. 

INTRODUCI'ION 

Good progress has been made in the last decade in advancing our knowledge 

of the neutral thermospheric circulation. Experimentally, much new information has 

been obtained from sateste measurements (see Killeen and Roble [ 19881 for a 

- review of Dynamics Explorer 2 results), incoherent scatter (IS) radars, Fabry-Perot 

(Fp) interferometers, and more recently coordinated Ism measurements [eg. 

Burnside et al., 1983; Salah et al., 19871, and global campaigns [Oliver and Salah, 

19881. Satellite data has recently been used by Hedin et al. [1988] to create a global 

empirical wind model. A semi-empirical approach, which combines observations of 

the F2 peak height with MSIS neutral densities and temperatures and ionospheric 

models has also proven fruitful [Buonsanto, 1986; Miller et a]., 1986; Forbes et al., 

19881. On the theoretical side, Thermospheric General Circulation Models 

2 

(TGCM's) have been steadily improved, and several papers have documented 
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comparisons of these TGCM's with experimental data [eg., Hernandez and Roble, 

1984; Forbes et al., 1987; Oliver and Salah, 1988, Crowley et al., this hue]. The latest 

TGCM's include tidal forcing at the lower boundary Fesen et al., 19861 and auroral 

models with time-dependent parame terizations of auroral particle precipitation 

[Roble and Ridley, 1987). The latest development is the self-consistent modeling of 

ionospheric and thermospheric processes [Rees et al., 1987, Roble et al., 1987b, 

19881. 

Studies of mid-latitude winds during quiet times reveal a generaI pattern of 

solar EW-driven day-to-night circulation with zonally averaged winds directed from 

the summer to the winter hemisphere, and a seasonal transition which the NCAR 

TGCM predicted to occur abruptly near the equinoxes [Roble et al, 1977). 

It was to investigate this transition period that the Equinox Transition Study 

(ETS), a global, coordinated, multi-instrument campaign, was organized and carried 

out during the period Sept. 17-24,1984. This turned out to be an ideal period for 

detailed study on account of the variety of geomagnetic conditions which occurred. 

After a period of geomagnetic quiet, a small storm (Ap=36) occurred on September 

19. Following a period of recovery, a major storm (Ap==112) occurred on September 

23. 

While the diurnally or zonally averaged global patterns of thermospheric 

neutral winds are becoming better understood, the diurnal and seasonal variations, 

particularly under varying geomagnetic conditions, are st i l l  poorly known. At high 

latitudes during storms, ion drag momentum forcing by the magnetospheric 

convection ionization drifts [eg., Killeen et al., 1984) is important in driving the 

neutral winds. The associated Joule heating and heating from particle precipitation 

results in post-midnight equatorward surges in the neutral wind, which have been 

modeled by the NCAR TGCM [Killeen and Roble, 1986, Roble et al., 1987al and 

frequently observed at mid-latitudes [eg., Babcock and Evans, 1979; Murty and Kim, 
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1 9 ~ ~ .  Because optical measurements are limited to the night-time, there is less day- 

time data on neutral winds. However, Roble et al. [ 19783, and Hagan [ 19881 have 

reported observations of daytime equatorward surges or propagating disturbances 

in the meridional neutral wind during storms. Millstone Hill observations of an 

equatorward day-time neutral surge on 19 September, 1984 have been already &en . 

reported by Foster and Aarons [ 19881, and related to disturbance electric fields. 

Theoretical models do not generally predict large scale changes in the day-time 

meridional winds during storms at mid-latitudes, though Roble et al. [198'7a] 

reported an equatorward propagating disturbance during the daytime at mid- 

latitudes in their simulations of the storm of March 22,1979. + 
METHOD 

The Millstone Hill (42.6ON, 2883OE) incoherent scatter radar operated 

continuously through the ETS period, from 1817 UT on Sept 17 to 1212 UT on I 

Sept. 24,1984. Both the fxed zenith-pointing 67 m antenna, and the fuuy-steerable 

46 m antenna were used, each providing measurements of the electron densities, 

electron and ion temperatures, and plasma he-of-sight velocities. The steerable 

antenna was employed in making repetitive elevation scans to provide 

altitudeflatitude cross-sectional maps of the ionospheric quantities, TWO planes were 
b* 

.- used, one along the local meridian, and a second in a plane canted apprordmateb 300 r' 
from the meridian. A pair of scans was completed in about 34 minutes. me zenia- 

Y 

I antenna measurements were interspersed with these scan measurements. 

Using the line-of sight velocity data from the zenith-pointing positio 

other appropriately selected positions, we are able to compute the full plasma 

velocity vector in the vicinity of Millstone Hill. Combining these with calc 

the plasma diffusion velocity we obtain the "local" (above ~Ils tone)  neutral 

meridional wind at F region heights (see section 1 below). Because the elevation 

scans provided measurements over a wide latitude range of the peak height of the Fj 
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region electron density (hmF9, as well as the electric field induced drift velocities 

(perpendicular to the magnetic field lines), it was possible to estimate the neutral 

winds using the techniques of Buonsanto (19861 and MiIler et al. [1986] for the full 

latitude range of hmF2 measurements (see sections 2 and 3 below). Thus the winds 

directly above Millstone Hill were obtained by three methods, and the consistency of 

the results gives more confidence in the latitude variation of the winds calculated by 

the latter two techniques. 

In addition, incoherent scatter measurements of the neutral meridional wind 

above Aieci’bo (18.3ON, 293.2OE) will be presented, to show that the southward 

surges are seen at latitudes equatorward of the range of the Millstone Hill 

observations. 

1. Neutral winds fiom irtcolaerent scaRer measuremenis of ion velociry 
The technique used at Millstone Hill to derive the neutral wind component in 

the magnetic meridian from three-position ion drift radar measurements has been 

descriied in some detail by Oliver and Salah [1988], and it relies on the approach 

followed by Salah and Holt [1974) with some modifications. In brief, ion Doppler 

velocity measurements are required in three antenna positions; for the ETS 

campaign we used zenith, and 220° and 3200 azimuths at an elevation of 400. 

~ Measurements at these three positions, made at an altitude of 300 km, were then 

used to compute the ion drift velocity parallel to the magnetic field line over an 

average time interval of 34 minutes. 

Subtraction of the ion diffusion velocity from the parallel ion drift yields the 

neutral wind component in the magnetic meridional direction, given by (VcosS + 
Usins), where V is in the geographic northward direction, U is in the eastward 

direction, and S is the magnetic declination (14OW) at Millstone Hill. The 

computation of the diffusion velocity depends on the basic plasma parameters 

(electron density and temperature and ion temperature) and their gradients in the F 
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region as determined from direct measurements by the radar. A key parameter in 

this computation, which affects the overall accuracy of the technique for night-time 

winds, is the ion-neutral diffusion coefficient which is discussed in section 4 below. 

The overall statistical uncertainty in the neutral wind velocity determined by 

this technique is 20-30 m s-'. At night, when diffusion effects are important, the 

accuracy of the technique depends on the knowledge of the neutral composition and 

the ion-neutral collision cross-section, primarily for O+-0 collisions, and these result 

in an estimated overall wind accuracy of 50-70 m s-l. W e  these accuracies apply 

during quiet and moderate geomagnetic conditions, during disturbed conditions we 

ascriie a larger uncertainty of 100 m sol for the winds determined by this technique. 

This is due primarily to increased uncertainty in the neuttal composition (particularly 

atomic oxygen). 

2. Neutral win& from the Servo Model 

The servo equations of Rishbeth et al. (19781 were first used by Buonsanto 

[ 198q to calculate neutral winds. Minor modifications in the winds calculation were 

made in a subsequent paper [Buonsanto, 1988). Because the present method is 

slightly different from that in earlier papers, it is briefly outlined here. 

In the work done here equations (12) and (19) of Rishbeth et al. 119781 are 

used: 

W = Hdzjdt + [eZ - e'kZ]D(sin21)/2H (1) 

where W is the vertical drift applied by a neutral wind or electric field, 

I k = 1.875 

z = (hmF2 - ho)/H 

where hmF2 is obtained from radar measurements 

ho is the balance height obtained from the level where the following are 

satisfied: 

p = 0.628 D(sin21)/H2 (day) (2a) 

I 
! 

I 
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@ = 0.115 D(sin*I)/H2 (night) (2b) 

with a gradual transition at sunrise and sunset based on the Chapman function. Here 

p is the recombination rate, obtained using MSIS-86 [Hedin, 1987 temperatures and 

densities. The Chen et al. [1978] reaction rate for 0' + 0 2  - 02' + 0 is now 

used. 

H = atomic oxygen scale height obtained from MSIS-86 
I = magnetic dip angle 

D = Din( 1 +Temi) 

Din = ion-neutral diffusion coefficient (see below) 

Te and Ti are electron and ion temperatures obtained from IS radar 

measurements. 

Then the poleward neutral wind is obtained from: 

UN = (V~NCOSI - W)/(cosI sin0 (3) 

where V ~ N  is the ion drift velocity component perpendicular to the earth's magnetic 

field in the magnetic north direction, obtained from the IS radar. 

Results will show that the effect of the dddt term in (1) is small so that to a 

good approximation: 

W = [eZ - e-kz]D(sin21)/2H (4) 

._ It may also be noted that the relation between W and z is non-linear. The 

effects of non-linearity are small except for strong drifts, as results below will show. 

For weak drifts ( Iz I small), (4) becomes: 

W = z(k+l)D(sin21)/2H ( 5 )  
The accuracy of the servo model method for determining neutral winds 

depends primarily upon accuracy of the measurement of hmF2 and of the neutral 

composition model and collision cross section. As will be shown below, the results are 

relatively insensitive to the adjustable parameters in the model (eg., the 

multiplicative factors in equation 2). The overall accuracy of the results should be 
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similar to those obtained €iom the line-of-sight velocities (section 1 above), provided 

that measured northward field-perpendicular velocities are included during disturbed 

periods. 

3. Neutral winds from the metliod of Miller et al. 

As mentioned above, results from servo model wind calculations will show 

that assuming a linear relationship between wind speed and the distance between 

hmF2 and the balance height does not normally result in statistically significant 

errors. Taking advantage of this approximate linearity, Miner et al. [1986] showed 

that the balance height and the constant of proportionality between meridional wind 

speed and layer height at a specified location, time, and solar conditions could be 

determined by modeling the F region at two wind speeds. The Field Line 

Interhemispheric Plasma (FLIP) Model was used to determine the height of the F 

region [Young et al., 1980; Richards and TOIT, 1985). Winds used in the modeling 

were pre-selected to bracket an average wind, thus minimizing the effect of the 

assumption of linearity. 

The poleward neutral wind is obtained by equation (3), but in this case using 

W = (hmF2 - ho)b (6) 
where LT is the calculated value of AhmF'z/AW and ho is the calculated balance 

height. The derivation of meridional winds using the FLIP model is similar in many 

respects to the derivation using the sexvo model. Note the similarities of equations 5 

and 6. 
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4. Ion-neutral diffuriorr coemient 

The O+,O collision cross section was obtained from Ddgarno [1964]; Banks 

and Holzer [ 19681. The O+,N2 and 0+,02 collision cross sections were obtained 

from Banks [ 19661. Then: 

Djn = [kTi/mo+]{l/[(~(O+,O> + u(O+,N~) + y(0+,02)]} 

Din =3.I%lO1%i/(f(Tn + Ti)o.5[OJ +42.3[N2] +41.1[02]} (7) 
Dalgarno [ 19641 gives f = 1. However, a value off = 1.7 is suggested by recent work 

[Burnside et al., 1987) Most of the resuIts presented in this paper were obtained 

using f=1.7 in (7). f = l  is used in one instance to examine the sensitivity of the wind 

results to this factor. 



10 

RESULTS AND DISCUSSION 

1. Neutral medwnal winds above Mfitone Ha 
Figure 1 shows the neutral winds above Millstone HiIl obtained from the IS 

line-of-sight velocity measurements, the sew0 model, and the method of Miller et al. 

[ 1986). Note that 0 h local mean time corresponds to 4 h 46 m UT. It was found that 

slightly better agreement between the winds derived from the servo model and the 

winds derived from the IS velocity measurements was obtained when the e m p a d  

constant c in the servo equations, normally 1.33 for day, and 1.73 for night (for 0 2  

and N2 loss equally important) was multiplied by a factor 0.75. This "tuning of the 

servo model was included in the wind determinations shown in Figure 1. It results in 

the balance height being lowered to a height where: 

= 1.077D(sin21)/H2 (day) (Sa) 

/3 = 0.160D(sin21)/H2 (night) (8b) I 

Agreement between results shown in Figure 1 obtained with the three 

methods is generally good, although there is a small systematic offset of the IS line- 

of-sight velocity derived winds to more equatorward values and the Miller et d. winds 

to more poleward values with respect to the servo model winds. The IS linesf-sight 

velocity technique also gives a much larger equatorward surge near 12 U T  on 

- September 19. Some of the scatter in the servo and Miller et al. results is due to the 

limited altitude resolution of the Is hmF2 measurements, and some is due to rapid 

variations in measured V ~ N  which are not reflected in the linesf-sight velocity 

derived winds. 

The magnetic history switch in MSIS-86 was turned on for these calculations, 

i.e., an array of eight values, obtained from 3-hourly ap values for up to 59 hours 

before the current time, were input for each data point. This is necessary in order to 

utilize the capability of the MSIS-86 model to provide neutral composition and 

temperature values during periods with large changes in geomagnetic conditions (eg. 
I 
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September 19 and 23). The effect on the IS and servo model results of turning on and 

off this ap history switch is shown in Figure 2. Use of the ap history generally results 

in stronger equatonvard winds, especially at night, than those obtained using Daily 

Ap only. 

The effect of tuning the servo model is shown in Figure 3 for one of the days 

of the period (September 21). The solid line shows winds calculated using equations 

1,3, and 8, Le., the tuned servo model, including non-linearity and the dzJdt tern. The 

dotted line shows Winds obtained using equations 1,2, and 3, i.e., the same as the solid 

curve, but using the standard servo model multiplicative factors. Generally the results 

are quite insensitive to the change in the multiplicative constants between (2a,b) and 

(8a,b). The tuning results in a maximum change of 29 m in the calculated wind at 

15 UT on September 21. Results are also shown in Figure 3 for the tuned servo 

model with the Wdt term removed (winds obtained from equations 3,4, and 8), and 

for no dddt term and a linear relationship between W and z (winds obtained born 

equations 3,s and 8). The results are close to those of the full, tuned servo model, 

with the largest difference on September 21 of 37 m s-l at 7 UT. Similar results were 

obtained on the other days of the ETS period. This shows the insensitivity of the 

results to both the dddt term and non-linear effects. Thus the Miller et al. method, 

which utilizes a formulation similar to equation 5, is not greatly affected in its ability 

to model the winds by its assumption of linearity. 

The factor f, by which the O+,O collision cross section is multiplied, was set to 

1.7 for the results given in Figure 1,2, and 3. 

Miller et a]. [198;rl showed that for quiet or moderate geomagnetic conditions, 

the effect of electric fields on the neutral wind determination is generally small, and 

usually smaller than the statistical uncertainties in the calculation. The electnc field 

correction, from (3), is given by v,N/sinI. It was obtained for the ETS period from IS 

measurements of the vector drift velocity, and the results are plotted in Figure 4. 
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Apart €tom a few data points on September 18, the magnitude of the correction 

(v,N/SinI I is generally less than 30 m s-l on quiet days during the period. It is quite 

large on the disturbed days, however, reaching nearly 200 m s-l on September 19. 

This shows that during disturbed periods the effects of electric fields must bc 

included in calculations of neutral winds obtained by an hmF2 method. 

Figure 5 gives the same results as Figure 1, except that the factor f in  (7) was 

reduced to 1. For all three methods, this smaller Of,O collision cross section resdts 

in an increase in the magnitude of the calculated winds. The increase in the 

equatorward wind determined from the line-of-sight measurements is 105 m s-1 at 

local midnight (5 UT) on September 18 and 60 m sol for the daytime surge on 

September 19 at 12 UT. Such increases in the wind speed would also be produced by 

equivalent decreases in [O], or by some combination of decreases in [O], [N21 and 

[Oi] from the MSIS-86 values. Thus, accurate determination of the O+,O cross 

section and the neutral concentrations is necessary for determination of the winds, 

either by incoherent scatter or by an hmF2 technique. 

Large-scale decreases in F region electron densities during storms are well 

known to be associated with decreases in the neutral atomic-to-molecular density 

ratio [eg., Prolss, 19871. Unfortunately, the MSIS-86 neutral densities seem 

- -  inconsistent with the observed ionospheric peak electron densities above Millstone 

Hill during the ETS period. Figure 6 shows observed daytime (10-16 LT) NmF2 

values together with values of the ratio R = [O]/(wd+23[021), obtained from 

MSIS-86 for the peak heights hmF2 This ratio was shown by Titheridge and 

Buonsanto [ 19831 to be proportional to the daytime equihiriurn F region electron 

density. Although mean daytime NmF2 drops from 4 . 2 ~ 1 0 ~ ~  m-3 on September 18 

to 26x10 12 m' 3 on September 19, (an apparent composition effect), mean R (at 

hmF2) actually increases from 1.30 on September 18 to 1.47 on September 19. It 

should be noted that at afied height of 300 km, decreases in R do occur on the 19th, 
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but decreases do not occur if the time-varying hmF2 values are input to MSIS. On 

September 23, R (at hmF2) does decrease, but by a smaller percentage than NmF2 

Figure 7 shows the effects on the winds calculated by the servo model of an 80% 

increase on September 19 in [N2] and [O& which would give R consistent with the 

10-16 LT NmF2 variation. The winds on the 19th become more polcward by II 20 m 

S-1. The value of the equatorward wind at 12 UT decreases from 198 m s-1 to 180 m 

C1. Figure 7 also shows the effect on the servo model winds of an increase in py 
and [02) by a factor of 5. Richards et al. 119881 report that a decrease in [Ol/[N2] by 

a factor of 3 to 5 is needed by the field-aligned interhemispheric (FLIP) model of the 

ionosphere to explain the observed NmF2 on September 19. A decrease in [OY[N21 

by a factor of 5 reduces further the magnitude of the equatorward surges on 

September 19 calculated by the servo model and Miller et al. techniques, increasing 

the differences with the winds obtained from the IS he-of-sight velocity 

measurements. The maximum value of the equatorward surge given by the S ~ N O  

model method near 12 UT decreases from 198 m s-l to 136 m s-l. 

For the morning surge on September 19, Crowley et a]. [this issue] reports 

that calculations using the Thermospherc/Tonosphere General Circulation Model 

(TIGCM) for Millstone Hill give an equatorward wind of approximately six hours 

duration with maximum value at 12 UT (7 LT) of 135 m s-l. The IS winds derived 

from line-of-sight velocities are equatotward throughout the day time, however, and 

much larger in magnitude (maximum value 439 m sol near 12 UT using fP1.7). This 

suggests that the changes to MSIS-86 required for consistency with the NmFz 

variations will include increases in pi] and [Od, rather than decreases in (01, as 

increases in the densities would result in smaller equatorward winds consistent with 

the TIGCM. However a factor of 5 increase in [Oz] and [N2] from the MSIS-86 

values, with [O] held constant, only results in a decrease from 439 m s-l to 420 m s-l 

in the wind determined from the line-of-sight velocities near 12 UT on September 19. 
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is because the MSIS 0 density is much larger than the MSIS N2 and O2 

densities. Thus, the servo model maximum equatomd wind during the surge agrees 

with the TIGCM result if the [02) and pz] MSIS are increased by a factor of 5. 

However, the wind determined from the line-of-sight velocities is stiU higher than the 

TIGCM wind by a factor of about 4. 

The strong southward surges in the daytime found on September 19 and 23 

may be compared to the northward or weak southward winds in the daytime on the 

adjoining quiet days. The quiet-time behavior is consistent with previous such 

observations at mid-latitudes [eg. Vasseur, 1969; Sal& et al. 19741. On both 
September 19 and 23 the magnetic storm induced reversals and intensifications of 

the wind velocity were observed near 12 UT (7 LT). Foster and h o r n  (19881 have 

already presented Millstone Hill observations of the daytime wind surge on 

September 19, and showed its relationship with disturbance electric fields which 

penetrated to low mid-latitudes during the event. A daytime surge has also been 

observed at Millstone Hill near 16 UT during the extremely disturbed (Ap = 202) 

conditions on February 8,1986 [Hagan, 19881. Roble et al. [ 19781 reported 

observations of a day-time equatoward propagating disturbance of about three 

hours duration following a sudden storm commencement on Sept. 18,1974. A similar 

surge was found by Roble et al. [1987a] in their simulations of the storm of March 2% 

1979. Thus it appears that the occurrence of day-time equatorward surges in the 

meridional neutral wind during storms may be a consistent feature of thermospheric 

dynamics. 

2. Neutral meridional witldr above Arecibo 

Figure 8 shows the meridional winds at Arecl'bo obtained from the incoherent 

scatter radar there, plotted together with the Millstone Hill IS line-of-sight velocity 

derived wind results also shown in Figure 1. The equatorward surges on 19 

September are seen at Arecibo (lU0N), though they are smaller in magnitude than 
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at Millstone. The maximum day-time equatorward wind of 439 m s-l at Millstone 

occurs at 1150 UT (7 LT), while at ArecI'bo the maximum wind occurs at 13 UT (9 

LT) and is 171 m s-l. Thus it takes about 70 minutes for the surge to travel from 

Millstone to Arecibo, implying a speed of propagation of about 550 m sol. This result 

is in excellent agreement with the speed of propagation of the gravity wave observed . 

by Roble et al. [ 19781, which traveled from Millstone to Areci i  in about 75 minutes. 

3. Larihrde vahrion of the neutral meridwital win& 

Figure 9 shows the latitude variation of the meridional winds at the longitude of 

Millstone Hill throughout the ETS period using the s e m  model method for the 

latitude range 32O to 55O N geodetic latitude. Figure 10 gives corresponding results 

obtained from the FLIP model (Miller et al. method). To obtain both sets of results, 

hmF2 was obtained from the IS radar, a factor f= 1.7 was used in (9, the MSIS-86 

densities were used with the ap history input and the measured v a  drift velocity 

values were included. In general, the latitude variation of the winds obtained by the 

two methods agree well. This gives more confidence in the two hmF2 wind 

calculation methods. The servo model winds, however, are systematically more 

negative (equatorward) by about 50 m s-l. Tuning at most accounts for about half of 

this difference. Apart from this small systematic difference, our discussion of the 

. - magnitude of the daytime surge on September 19 leads us to believe that the 

uncertainties in the results shown in Figures 9 and 10 arise mainly from the model 

inputs (MSIS-86, hmF2, collision cross section) rather than in the techniques 

themselves. Though the two methods are essentially equivalent, the servo model does 

have the advantage of simplicity and ease of calculation, relying as it does on 

analytical descriptions of the F2 peak. By contrast, the Miller et al. method has the 

advantage of a compre hensive field line interhemispheric model. 

The equatonvard surge near 12 UT on September 19 is shown by Figures 9 

and 10 to cover the whole range of latitudes visible from Millstone. Strong post- 
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midnight surges are observed on September 19 and 23. On September 23 the day- 

time winds are initially equatorward, but turn poleward later in the day. During the 

quieter days (September 18,20,21, and 22, the normal pattern of equatorward 

nighttime winds and small daytime winds is evident. 

Further work on daytime neutral surges, as discussed in this paper, should 

prove fruitful. The energy sources responsible for initiating the surgeq i.e., Joule 

heating due to magnetospheric convection induced momentum forcing, 

heating due to particle precipitation, need to be better quantified experimentally. 

This will improve inputs to the self-consistent thermosphere-ionosphere global 

models. For more accurate determination of the meridional winds from line-of-sight 

velocity or hmF2 measurements, the O+,O collision cross section and the neutral 

composition and temperature need to be better determined An improved collision 

cross section can be obtained from laboratory measurements, quantum mechanical 

calculations, and from comparison of IS and Fabry Perot night-time results during 

quiet times, when the MSIS concentrations are more reliable. Independent 

measurements of neutral densities and temperatures during storms would be helpful 

to assess the validity of MSIS-86 under these conditions. 

well 
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CONCLUSIONS 
The results of this study of the meridional neutral wind observed from the 

Millstone Hill and Arecibo IS radars during the ETS period reveal the normal 

pattern of night-time equatorward winds and small day-time winds on the quiet days. 

On the magnetically disturbed days, strong equatorward surges are evident, with day- 

time (morning) surges on September 19 and 23. The magnitudes of the surges are 

still uncertain, due to the poorly known o+,o collision cross section and neutral 

composition. Further work on refining the collision cross section and better neutral 

composition and temperature estimates would help to resolve the apparent 

disagreement in the magnitude of the day-time surge on September 19 between the 

IS line-of-sight velocity measured winds and TIGCM results. This disagreement is 

only slightly reduced when increases (implied by the ionospheric behavior) in 

molecular nitrogen and oxygen densities above those given by MSIS-86 are used in 

the calculation of the diffusion velocity. The two methods [Buonsanto, 1986, Miller et 

al. 19861 for obtaining the latitude variation of the wind from the IS measured hmF2 

values have been shown to be essentially equivalent. These methods enabled 

determination of the meridional winds, including the southward surges, over a 

latitude range from 32O to 5S0 N geodetic latitude. 
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Fig. 1. Neutral meridional winds in the thermosphere above Millstone Hill during the 

ETS period. In all calculations the ap history was input to the MSIS-86 model, and f 

= 1.7 was used in the calculation of the ion-neutral diffusion coefficient. Solid line: 

winds at 300 km from 1s line-of-sight velocity measurements. Circles: Winds at hmF2 

from the Servo model. Crosses: winds at hmF2 from the FLIP model (Miier et a1.) 

method. 0 h local mean time corresponds to 4 h 46 m UT. 

Fig. 2, Winds obtained from Is line-of-sight velocity measurements and from the 

servo model, showing the effect of turning on and off the ap history switch in MSIS- 

86. 

Fig. 3. Servo model winds bn Sept. 21,1984, showing the effects of the Mdt term, 

non-linearity, and tuning. 

Fig. 4. The electric field correction to the servo model and Miiler et al. winds above 

Millstone Hill, obtained from IS measurements of the magnetic field perpendicular 

north-south ion velocity. 

Fig. 5. Same as Fig. l., except using f = 1 in the calculation of the ion-neutral 

diffusion coefficient. 

Fig. 6. Observed daytime (10 - 16 local time) NmF2 obtained from the Millstone Hill 

Digisonde, and the atomic to molecular density ratio R (see text) obtained at the 

measured peak height hmF2 from the MSIS-86 model. 

Fig. 7. Servo model winds on September 18 and 19, showing the effect of increasing 

the MSIS-86 N2 and 0 2  densities. 

Fig. 8. Neutral winds obtained from IS line-of-sight velocity measurements at 

Arecibo, compared with those above Millstone Hill. 

Fig. 9. Latitude variation of the meridional neutral winds (m s-l) at the longitude of 

Millstone Hill, calculated using the sexvo model. 
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Fig. 10. Same as Fig. 9, but using the FLIP model (Miller et al. method) to calculate 

the meridional wind speed. 
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